IPELTÉ I

PHASE EQUILIBRIA

MOLECULAR TRANSPORT

THERMODYNAMICS

Phase Equilibria in Hydrocarbon Systems

Volumetric and Phase Behavior of the Ethane-n-Decane System

H. H. REAMER and B. H. SAGE

Chemical Engineering Laboratory, California Institute of Technology, Pasadena, Calif.

THE EXTENSIVE studies of the volumetric and phase behavior of binary mixtures during the past several decades have emphasized the complexities of the relationships among the molal volume, pressure, temperature, and composition of the phase and disclosed the continuing need for further experimental studies. The behavior of ethane in binary hydrocarbon mixtures is much less well understood than that of methane. Information concerning the volumetric and phase behavior of mixtures of ethane and *n*-decane does not appear to be available, and for this reason studies of the behavior of this binary system were made at temperatures between 40° and 460° F. at pressures up to 10,000 p.s.i.a.

The volumetric behavior of ethane has been carefully studied by Beattie and others (2, 4) and supplemented by other recent investigations (9). The critical state was established by Schmidt and Thomas (14) and by Beattie, Su, and Simard (3). The characteristics of mixtures of ethane with several other hydrocarbons, water, carbon dioxide, nitrogen, and hydrogen sulfide have been established in reasonable detail.

n-Decane has also been subject to rather careful study. Rossini (1) has reported the pertinent properties of this hydrocarbon at pressures near atmospheric, and studies of the effect of pressure and temperature upon the molal volume of the liquid phase have been reported (8). The measurements of vapor pressure reported by Rossini (1) are in good agreement with other independent measurements (9). The properties of *n*-decane at the critical state have been reported by Rossini (1) from a critical review of the available information and he reports a critical temperature of 654° F. and a critical pressure of 306 p.s.i.a. The behavior of decane with other hydrocarbons and binary mixtures has been studied to a limited extent.

The referenced experimental information concerning the volumetric and phase behavior of ethane and *n*-decane

appears adequate to establish the requisite properties of these two pure hydrocarbons, and no further consideration of their behavior is included except semiquantitative graphical representations.

APPARATUS AND METHODS

Equipment employed has been described in detail (12). Mixtures of ethane and n-decane were confined within a stainless steel pressure vessel. The volume of this vessel available to hydrocarbons was varied by the introduction and withdrawal of known amounts of mercury. The attainment of equilibrium was hastened by the use of mechanical agitation. The molal volume and corresponding pressure were determined for a series of states for each of eight systematically chosen temperatures between 40° and 460° F. The quantity of ethane introduced into the vessel was determined by weighing-bomb techniques (12) with a probable uncertainty of not more than 0.05%. The quantity of n-decane introduced was checked by measurements of its volumetric behavior at 100° F. Throughout the investigations of the four mixtures involved in this study the agreement of the weight of n-decane added to the equipment as determined from gravimetric and volumetric methods was within 0.08%.

The temperature of the sample under investigation was established from that of a vigorously stirred oil bath which surrounded the stainless steel pressure vessel. A strain-free, platinum resistance thermometer (6) was employed to measure the temperature of the oil bath. This instrument was periodically compared with the indications of a similar device calibrated by the National Bureau of Standards. A comparison of three such calibrated resistance thermometers indicates the temperature of the sample is related to the international platinum scale with an uncertainty of less than 0.03° F. Pressures were measured by means of a piston-cylinder combination utilized in connection with a balance (12). This device was periodically calibrated against the vapor pressure of carbon dioxide at the ice point (5). Experience with this equipment (11) over two decades indicates that the pressure of the sample was established with a probable error of 0.05% or 0.1 p.s.i.a., whichever was the larger measure of uncertainty.

The total volume of the pressure vessel available to hydrocarbons was established within 0.1% at pressures up to 5000 p.s.i.a. and within 0.25% at the higher pressures. Measurements upon each sample were made at a series of ascending temperatures at intervals of 60° from 40° to 460° F. Supplementary measurements were then obtained at 100° F.; the discrepancies between the first and second set of measurements did not exceed 0.1%. On the basis of experience with this equipment over a period of two decades, it is believed that the molal volumes do not involve uncertainties greater than 0.25% at temperatures below 300° F., and perhaps as much as 0.3% at the higher temperatures.

The volumetric data were smoothed by residual graphical methods with respect to pressure, temperature, and composition. Bubble point was established from the discontinuous change in the isothermal derivative of volume with respect to pressure at constant composition. In the case of mixtures involving ethane, these discontinuities are less distinct as the critical state of the mixture is approached than is the case for mixtures involving methane. For this reason there is a somewhat larger uncertainty in the evaluation of the bubble point pressure for this system than was found in some of the earlier investigations involving methane (8, 13).

The composition of the dew point gas was determined by withdrawal of a gas phase sample from heterogeneous mixtures of ethane and *n*-decane under isobaric, isothermal conditions. The composition of the gas phase withdrawn was determined by a partial condensation procedure. The partial condenser employed (7) was maintained near the temperature of solid carbon dioxide and acetone. The ethane, carried as overhead, was condensed in a weighing bomb (12) at the temperature of liquid nitrogen. The n-decane was permitted to warm to room temperature and then recooled again several times to ensure a relatively complete separation of the ethane from the *n*-decane. The gain in weight of the partial condenser and of the weighing bomb was employed to determine the quantities of n-decane and of ethane obtained from the gas phase sample. Measurements upon duplicate samples withdrawn at the same equilibrium state indicate a probable error of the order of 0.005 mole fraction of n-decane in these procedures.

MATERIALS

The ethane and *n*-decane were obtained from the Phillips Petroleum Co. The ethane of research grade was reported to contain not more than 0.001 mole fraction of impurities as determined by mass spectrographic analysis. Partial condensation analysis showed the sample contained less than this quantity of volatile impurities. The ethane was employed without purification, as it did not contain measurable quantities of water, carbon dioxide, or other easily removable contaminants.

The *n*-decane was reported to contain not more than 0.0065 mole fraction of materials other than *n*-decane. The hydrocarbon as received, and after deaeration and drying over metallic sodium, exhibited a specific weight of 45.354 pounds per cubic foot at 77° F. This value compares with 45.337 pounds per cubic foot reported by Rossini (1) for an air-saturated sample at the same temperature. A refractive index of 1.4097 relative to the D lines of sodium was obtained at 77° F. for the deaerated sample. This value compares satisfactorily with 1.40967 reported by Rossini (1)

for air-saturated *n*-decane at the same temperature. On the basis of the above-mentioned comparisons of critically chosen values, it appears that the samples of *n*-decane contained less than -0.005 mole fraction of materials other than *n*-decane, and these impurities were probably saturated compounds involving ten carbon atoms per molecule.

EXPERIMENTAL RESULTS

The volumetric measurements obtained upon the four mixtures investigated at 160° F. are shown in Figure 1. The information presented concerning the volumetric behavior of *n*-decane and ethane was based upon the experimental information discussed earlier. Experimental information similar to that shown in Figure 1 was obtained for temperatures between 40° and 460° F. The detailed experimental data obtained are available (10). The smoothed data for even values of composition, pressure, and temperature are recorded in Table I. The standard error of estimate of experimental molal volumes from the smoothed values recorded in Table I was 0.006 cubic foot per pound-mole. This measure of uncertainty corresponds to an error of 0.23% for an average value of the molal volumes.

Figure 1. Volumetric measurements at 160° F.

Figure 2. Pressure-composition diagram for ethane-n-decane system

Prossure	Mole Fraction Ethane									
P.S.I.A.	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
					40° F.					
B.P.	(40) ^{<i>a</i>} 2.860	(81) 2.661	(118) 2.462	(155) 2.261	(190) 2.056	(230) 1.850	(270) 1.652	(310) 1.466	(350) 1.300	
$\begin{array}{c} 200\\ 400\\ 600\\ 800\\ 1,000\\ 1,250\\ 1,500\\ 1,750\\ 2,000\\ 2,250\\ 2,500\\ 2,500\\ 2,500\\ 2,500\\ 3,500\\ 4,000\\ 3,500\\ 4,000\\ 4,500\\ 5,000\\ 6,000\\ 7,000\\ 8,000\\ 9,000\\ 10,000\end{array}$	2.855° 2.850 2.847 2.840 2.836 2.830 2.825 2.820 2.815 2.812 2.806 2.802 2.795 2.787 2.780 2.775 2.780 2.775 2.750 2.750 2.738 2.729 2.722	$\begin{array}{c} 2.658\\ 2.654\\ 2.649\\ 2.645\\ 2.640\\ 2.635\\ 2.630\\ 2.625\\ 2.621\\ 2.617\\ 2.612\\ 2.607\\ 2.604\\ 2.597\\ 2.590\\ 2.582\\ 2.575\\ 2.562\\ 2.550\\ 2.550\\ 2.539\\ 2.529\\ 2.518\end{array}$	$\begin{array}{c} 2.460\\ 2.456\\ 2.452\\ 2.448\\ 2.444\\ 2.439\\ 2.434\\ 2.428\\ 2.424\\ 2.419\\ 2.415\\ 2.411\\ 2.407\\ 2.398\\ 2.390\\ 2.383\\ 2.375\\ 2.364\\ 2.351\\ 2.340\\ 2.329\\ 2.319\\ \end{array}$	$\begin{array}{c} 2.260\\ 2.254\\ 2.250\\ 2.245\\ 2.241\\ 2.236\\ 2.232\\ 2.226\\ 2.222\\ 2.217\\ 2.212\\ 2.208\\ 2.204\\ 2.198\\ 2.189\\ 2.189\\ 2.189\\ 2.189\\ 2.189\\ 2.182\\ 2.173\\ 2.162\\ 2.150\\ 2.138\\ 2.127\\ 2.116\end{array}$	$\begin{array}{c} 2.055\\ 2.050\\ 2.045\\ 2.040\\ 2.035\\ 2.030\\ 2.025\\ 2.020\\ 2.015\\ 2.010\\ 2.006\\ 2.000\\ 1.997\\ 1.990\\ 1.985\\ 1.978\\ 1.971\\ 1.960\\ 1.946\\ 1.934\\ 1.922\\ 1.916\end{array}$	$\begin{array}{c} 1.846\\ 1.842\\ 1.838\\ 1.834\\ 1.828\\ 1.824\\ 1.818\\ 1.814\\ 1.805\\ 1.798\\ 1.794\\ 1.798\\ 1.794\\ 1.788\\ 1.780\\ 1.775\\ 1.768\\ 1.755\\ 1.768\\ 1.755\\ 1.768\\ 1.755\\ 1.744\\ 1.733\\ 1.723\\ 1.716\end{array}$	$\begin{array}{c} 1.650\\ 1.646\\ 1.641\\ 1.636\\ 1.630\\ 1.624\\ 1.619\\ 1.616\\ 1.609\\ 1.606\\ 1.599\\ 1.596\\ 1.589\\ 1.581\\ 1.574\\ 1.566\\ 1.553\\ 1.541\\ 1.553\\ 1.541\\ 1.531\\ 1.519\\ 1.510\end{array}$	$\begin{array}{c} 1.464\\ 1.455\\ 1.450\\ 1.446\\ 1.442\\ 1.435\\ 1.429\\ 1.423\\ 1.417\\ 1.410\\ 1.405\\ 1.399\\ 1.392\\ 1.384\\ 1.374\\ 1.365\\ 1.351\\ 1.339\\ 1.326\\ 1.315\\ 1.306\end{array}$	$\begin{array}{c} 1.295\\ 1.282\\ 1.275\\ 1.267\\ 1.257\\ 1.250\\ 1.242\\ 1.236\\ 1.228\\ 1.220\\ 1.213\\ 1.207\\ 1.199\\ 1.185\\ 1.178\\ 1.168\\ 1.155\\ 1.140\\ 1.125\\ 1.140\\ 1.125\\ 1.115\\ 1.104 \end{array}$	
	(05)	(1.2.0)	(10-)	(0.0-)	100° F.					
	(65) ⁵ 2.969	(130) 2.767	(197) 2.559	(265) 2.357	(338) 2.151	(417) 1.952	(497) 1.761	(586) 1.578	(681) 1.451	
$\begin{array}{c} 200\\ 400\\ 800\\ 1,000\\ 1,250\\ 1,500\\ 1,750\\ 2,500\\ 2,250\\ 2,500\\ 2,750\\ 3,000\\ 3,500\\ 4,000\\ 4,500\\ 5,000\\ 4,500\\ 5,000\\ 6,000\\ 7,000\\ 8,000\\ 9,000\\ 10,000\end{array}$	2.963° 2.957 2.950 2.943 2.931 2.925 2.911 2.925 2.918 2.911 2.906 2.900 2.894 2.889 2.879 2.871 2.862 2.855 2.842 2.825 2.842 2.829 2.813 2.805 2.788	$\begin{array}{c} 2.764\\ 2.758\\ 2.753\\ 2.747\\ 2.741\\ 2.734\\ 2.726\\ 2.721\\ 2.714\\ 2.707\\ 2.701\\ 2.695\\ 2.695\\ 2.690\\ 2.680\\ 2.661\\ 2.661\\ 2.6641\\ 2.6641\\ 2.630\\ 2.612\\ 2.602\\ 2.585\end{array}$	$\begin{array}{c} 2.558\\ 2.554\\ 2.548\\ 2.544\\ 2.538\\ 2.531\\ 2.525\\ 2.519\\ 2.513\\ 2.506\\ 2.506\\ 2.500\\ 2.494\\ 2.488\\ 2.479\\ 2.469\\ 2.469\\ 2.469\\ 2.461\\ 2.449\\ 2.437\\ 2.424\\ 2.409\\ 2.398\\ 2.384\end{array}$	$\begin{array}{c} 2.352\\ 2.346\\ 2.341\\ 2.335\\ 2.328\\ 2.322\\ 2.315\\ 2.309\\ 2.303\\ 2.298\\ 2.291\\ 2.286\\ 2.275\\ 2.265\\ 2.255\\ 2.265\\ 2.255\\ 2.247\\ 2.231\\ 2.218\\ 2.204\\ 2.192\\ 2.180\\ \end{array}$	2.150 2.144 2.138 2.131 2.126 2.118 2.112 2.106 2.099 2.099 2.099 2.099 2.069 2.069 2.040 2.049 2.040 2.049 2.0400 2.0400 2.0400 2.040000000000	$\begin{array}{c} \dots \\ 1.945 \\ 1.938 \\ 1.931 \\ 1.923 \\ 1.917 \\ 1.910 \\ 1.903 \\ 1.895 \\ 1.889 \\ 1.883 \\ 1.875 \\ 1.866 \\ 1.855 \\ 1.846 \\ 1.835 \\ 1.846 \\ 1.835 \\ 1.819 \\ 1.803 \\ 1.791 \\ 1.777 \\ 1.766 \end{array}$	$\begin{array}{c} \dots \\ 1.754 \\ 1.746 \\ 1.738 \\ 1.728 \\ 1.718 \\ 1.710 \\ 1.694 \\ 1.686 \\ 1.678 \\ 1.671 \\ 1.659 \\ 1.648 \\ 1.659 \\ 1.648 \\ 1.628 \\ 1.610 \\ 1.594 \\ 1.581 \\ 1.568 \\ 1.556 \end{array}$	$\begin{array}{c} \dots \\ 1.577 \\ 1.566 \\ 1.554 \\ 1.542 \\ 1.530 \\ 1.519 \\ 1.507 \\ 1.498 \\ 1.489 \\ 1.489 \\ 1.489 \\ 1.480 \\ 1.471 \\ 1.457 \\ 1.445 \\ 1.434 \\ 1.424 \\ 1.424 \\ 1.424 \\ 1.406 \\ 1.390 \\ 1.377 \\ 1.363 \\ 1.354 \end{array}$	$\begin{array}{c} \dots \\ 1.433 \\ 1.408 \\ 1.385 \\ 1.367 \\ 1.351 \\ 1.338 \\ 1.326 \\ 1.315 \\ 1.305 \\ 1.295 \\ 1.280 \\ 1.266 \\ 1.253 \\ 1.241 \\ 1.202 \\ 1.186 \\ 1.172 \\ 1.160 \end{array}$	
	$(91)^a$ 3.086	(186) 2.877	(287) 2.668	(394) 2.462	(511) 2.260	(639) 2.059	(783) 1.865	(940) 1.704	(1112) 1.645	
$\begin{array}{c} 200\\ 400\\ 600\\ 800\\ 1,000\\ 1,250\\ 1,500\\ 1,750\\ 2,000\\ 2,250\\ 2,500\\ 2,750\\ 3,000\\ 3,500\\ 4,000\\ 4,500\\ 5,000\\ 5,000\\ 6,000\\ 7,000\\ 8,000\\ 9,000\\ 10,000\end{array}$	3.078° 3.067 3.057 3.048 3.040 3.030 3.023 3.015 3.008 3.000 2.995 2.988 2.982 2.982 2.970 2.960 2.948 2.936 2.915 2.900 2.8869 2.855	$\begin{array}{c} 2.873\\ 2.863\\ 2.854\\ 2.845\\ 2.836\\ 2.827\\ 2.820\\ 2.812\\ 2.806\\ 2.799\\ 2.799\\ 2.794\\ 2.788\\ 2.788\\ 2.782\\ 2.768\\ 2.745\\ 2.745\\ 2.736\\ 2.718\\ 2.701\\ 2.683\\ 2.666\\ 2.652\end{array}$	$\begin{array}{c} 2.660\\ 2.647\\ 2.641\\ 2.634\\ 2.617\\ 2.610\\ 2.602\\ 2.596\\ 2.591\\ 2.582\\ 2.576\\ 2.576\\ 2.564\\ 2.552\\ 2.543\\ 2.530\\ 2.511\\ 2.496\\ 2.478\\ 2.462\\ 2.449\end{array}$	$\begin{array}{c} 2.460\\ 2.450\\ 2.442\\ 2.434\\ 2.426\\ 2.419\\ 2.412\\ 2.403\\ 2.397\\ 2.390\\ 2.382\\ 2.374\\ 2.362\\ 2.374\\ 2.362\\ 2.374\\ 2.362\\ 2.374\\ 2.324\\ 2.305\\ 2.290\\ 2.275\\ 2.258\\ 2.245\end{array}$	2.257 2.247 2.237 2.228 2.219 2.210 2.202 2.194 2.188 2.176 2.170 2.156 2.142 2.130 2.119 2.099 2.082 2.067 2.050 2.035	 2.051 2.042 2.031 2.021 2.010 2.002 1.992 1.985 1.976 1.967 1.952 1.938 1.925 1.913 1.891 1.873 1.858 1.843 1.828	$\begin{array}{c} \dots \\ 1.863 \\ 1.852 \\ 1.838 \\ 1.825 \\ 1.810 \\ 1.800 \\ 1.788 \\ 1.778 \\ 1.768 \\ 1.760 \\ 1.744 \\ 1.730 \\ 1.744 \\ 1.730 \\ 1.715 \\ 1.700 \\ 1.680 \\ 1.661 \\ 1.643 \\ 1.630 \\ 1.614 \end{array}$	$\begin{array}{c} \dots \\ 1.694 \\ 1.673 \\ 1.650 \\ 1.633 \\ 1.614 \\ 1.600 \\ 1.587 \\ 1.564 \\ 1.564 \\ 1.544 \\ 1.525 \\ 1.511 \\ 1.497 \\ 1.471 \\ 1.453 \\ 1.436 \\ 1.421 \\ 1.409 \end{array}$	$\begin{array}{c} \dots \\ \dots \\ \dots \\ 1.620 \\ 1.580 \\ 1.545 \\ 1.512 \\ 1.486 \\ 1.460 \\ 1.440 \\ 1.420 \\ 1.388 \\ 1.362 \\ 1.342 \\ 1.327 \\ 1.297 \\ 1.297 \\ 1.272 \\ 1.250 \\ 1.233 \\ 1.215 \end{array}$	

Table I. Molal Volumes for Mixtures of Ethane and n-Decane

Table I. Molal Volumes for Mixtures of Ethane and *n*-Decane (continued)

Pressure	Mole Fraction Ethane									
P.S.I.A.	0.1	0.2	0.3	0.4	0.5 220° F.	0.6	0.7	0.8	0.9	
B.P.	(117)° 3,221	(244) 3.005	(380) 2.795	(526) 2.587	(692) 2.382	(876) 2.182	(1080) 1.997	(1299) 1.898	(1502) 1.958	
$\begin{array}{c} 200\\ 400\\ 600\\ 800\\ 1,000\\ 1,250\\ 1,500\\ 2,000\\ 2,250\\ 2,500\\ 2,750\\ 3,000\\ 3,500\\ 4,000\\ 4,500\\ 5,000\\ 5,000\\ 5,000\\ 5,000\\ 8,000\\ 9,000\\ 10,000 \end{array}$	3.212° 3.194 3.180 3.169 3.159 3.149 3.139 3.129 3.119 3.111 3.100 3.094 3.087 3.072 3.057 3.043 3.030 3.006 2.988 2.964 2.923	$\begin{array}{c} 2.990\\ 2.978\\ 2.966\\ 2.943\\ 2.933\\ 2.922\\ 2.912\\ 2.904\\ 2.895\\ 2.887\\ 2.879\\ 2.864\\ 2.849\\ 2.835\\ 2.822\\ 2.778\\ 2.778\\ 2.778\\ 2.759\\ 2.738\\ 2.719\end{array}$	$\begin{array}{c} 2.791\\ 2.777\\ 2.767\\ 2.757\\ 2.745\\ 2.732\\ 2.722\\ 2.712\\ 2.703\\ 2.692\\ 2.685\\ 2.677\\ 2.659\\ 2.644\\ 2.630\\ 2.616\\ 2.592\\ 2.570\\ 2.550\\ 2.550\\ 2.531\\ 2.513\\ \end{array}$	$\begin{array}{c} \\ 2.581 \\ 2.569 \\ 2.558 \\ 2.544 \\ 2.532 \\ 2.521 \\ 2.511 \\ 2.511 \\ 2.500 \\ 2.492 \\ 2.480 \\ 2.471 \\ 2.455 \\ 2.439 \\ 2.423 \\ 2.410 \\ 2.386 \\ 2.365 \\ 2.346 \\ 2.328 \\ 2.308 \end{array}$	2.375 2.365 2.365 2.352 2.340 2.328 2.316 2.305 2.292 2.283 2.273 2.254 2.236 2.218 2.201 2.174 2.150 2.133 2.116 2.098 280° F.	2.175 2.161 2.146 2.132 2.119 2.106 2.095 2.081 2.070 2.049 2.030 2.012 1.994 1.970 1.946 1.927 1.908 1.891	 1.984 1.964 1.945 1.926 1.910 1.893 1.879 1.865 1.839 1.818 1.799 1.782 1.728 1.728 1.708 1.678	$\begin{array}{c} \dots \\ \dots \\ \dots \\ \dots \\ 1.847 \\ 1.804 \\ 1.768 \\ 1.736 \\ 1.714 \\ 1.692 \\ 1.675 \\ 1.648 \\ 1.624 \\ 1.624 \\ 1.624 \\ 1.582 \\ 1.548 \\ 1.521 \\ 1.500 \\ 1.482 \\ 1.468 \end{array}$	$\begin{array}{c} \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ 1.827 \\ 1.750 \\ 1.694 \\ 1.650 \\ 1.614 \\ 1.580 \\ 1.526 \\ 1.485 \\ 1.455 \\ 1.428 \\ 1.380 \\ 1.344 \\ 1.316 \\ 1.292 \\ 1.275 \end{array}$	
	(147)° 3.370	(301) 3.152	(469) 2.939	(661) 2.730	(870) 2.529	(1102) 2.329	(1361) 2.158	(1596) 2.145	(1680) 2.494	
$\begin{array}{c} 200\\ 400\\ 600\\ 800\\ 1,250\\ 1,500\\ 1,750\\ 2,250\\ 2,250\\ 2,750\\ 2,750\\ 3,500\\ 4,000\\ 4,500\\ 5,000\\ 6,000\\ 7,000\\ 8,000\\ 9,000\\ 10,000\\ \end{array}$	3.358° 3.338 3.320 3.206 3.293 3.276 3.261 3.246 2.235 3.224 3.214 3.203 3.193 2.176 3.157 3.141 3.124 3.093 3.065 3.040 3.016 2.992	$\begin{array}{c} 3.142\\ 3.121\\ 3.105\\ 3.089\\ 3.070\\ 3.054\\ 3.039\\ 3.026\\ 3.014\\ 3.003\\ 2.991\\ 2.982\\ 2.963\\ 2.947\\ 2.931\\ 2.915\\ 2.886\\ 2.859\\ 2.833\\ 2.810\\ 2.785\end{array}$	$\begin{array}{c} \dots \\ 2.923 \\ 2.907 \\ 2.891 \\ 2.870 \\ 2.854 \\ 2.836 \\ 2.822 \\ 2.809 \\ 2.797 \\ 2.785 \\ 2.775 \\ 2.775 \\ 2.775 \\ 2.775 \\ 2.775 \\ 2.775 \\ 2.738 \\ 2.721 \\ 2.676 \\ 2.650 \\ 2.650 \\ 2.625 \\ 2.602 \\ 2.578 \end{array}$	$\begin{array}{c} \dots \\ 2.715 \\ 2.698 \\ 2.678 \\ 2.661 \\ 2.644 \\ 2.627 \\ 2.612 \\ 2.598 \\ 2.585 \\ 2.574 \\ 2.551 \\ 2.551 \\ 2.530 \\ 2.513 \\ 2.494 \\ 2.464 \\ 2.440 \\ 2.418 \\ 2.395 \\ 2.370 \end{array}$	 2.514 2.490 2.470 2.454 2.438 2.422 2.407 2.392 2.377 2.351 2.326 2.305 2.286 2.255 2.229 2.207 2.186 2.163 340° F.	2.312 2.289 2.269 2.249 2.233 2.216 2.200 2.185 2.156 2.128 2.105 2.083 2.048 2.017 1.994 1.972 1.952	 2.139 2.110 2.082 2.059 2.035 2.015 1.994 1.960 1.928 1.900 1.875 1.834 1.798 1.776 1.754 1.740	$\begin{array}{c} \dots \\ \dots $	$\begin{array}{c} \dots \\ \dots \\ 2.392 \\ 2.142 \\ 2.001 \\ 1.905 \\ 1.837 \\ 1.782 \\ 1.639 \\ 1.631 \\ 1.579 \\ 1.534 \\ 1.466 \\ 1.422 \\ 1.389 \\ 1.359 \\ 1.334 \end{array}$	
	(178)° 3.537	(361) 3.330	(552) 3.121	(772) 2.912	(1018) 2.714	(1286) 2.538	(1535) 2.431	(1707) 2.621	(1651)° 3.31	
$\begin{array}{c} 200\\ 400\\ 600\\ 800\\ 1,250\\ 1,250\\ 1,500\\ 2,250\\ 2,500\\ 2,250\\ 2,500\\ 2,750\\ 3,500\\ 4,000\\ 4,500\\ 5,000\\ 5,000\\ 6,000\\ 7,000\\ 8,000\\ 9,000\\ 10,000\\ \end{array}$	3.534^{b} 3.488 3.469 3.4450 3.427 3.410 3.390 3.374 3.358 3.343 3.329 3.316 3.291 3.266 3.247 3.226 3.187 3.153 3.124 3.094 3.068	$\begin{array}{c} 3.323\\ 3.229\\ 3.253\\ 3.230\\ 3.209\\ 3.188\\ 3.169\\ 3.153\\ 3.134\\ 3.120\\ 3.104\\ 3.077\\ 3.051\\ 3.032\\ 3.010\\ 2.972\\ 2.940\\ 2.912\\ 2.881\\ 2.857 \end{array}$	$\begin{array}{c} 3.112\\ 3.079\\ 3.058\\ 3.033\\ 2.009\\ 2.986\\ 2.965\\ 2.947\\ 2.927\\ 2.927\\ 2.911\\ 2.894\\ 2.866\\ 2.841\\ 2.817\\ 2.796\\ 2.761\\ 2.729\\ 2.700\\ 2.669\\ 2.645\\ \end{array}$	$\begin{array}{c} \dots\\ 2.902\\ 2.870\\ 2.839\\ 2.811\\ 2.788\\ 2.763\\ 2.745\\ 2.726\\ 2.658\\ 2.658\\ 2.658\\ 2.658\\ 2.658\\ 2.658\\ 2.548\\ 2.548\\ 2.548\\ 2.548\\ 2.548\\ 2.548\\ 2.548\\ 2.548\\ 2.548\\ 2.548\\ 2.548\\ 2.548\\ 2.548\\ 2.548\\ 2.548\\ 2.458\\ 2.434\\ \end{array}$	2.6666 2.628 2.596 2.570 2.549 2.529 2.511 2.490 2.459 2.433 2.407 2.384 2.309 2.249 2.225	$\begin{array}{c} \dots \\ \dots \\ \dots \\ 2.472 \\ 2.430 \\ 2.397 \\ 2.370 \\ 2.350 \\ 2.326 \\ 2.306 \\ 2.274 \\ 2.240 \\ 2.213 \\ 2.183 \\ 2.136 \\ 2.098 \\ 2.069 \\ 2.042 \\ 2.015 \end{array}$	$\begin{array}{c} \dots \\ \dots $	$\begin{array}{c} \dots \\ \dots \\ \dots \\ 2.520 \\ 2.340 \\ 2.230 \\ 2.153 \\ 2.084 \\ 2.028 \\ 1.946 \\ 1.883 \\ 1.828 \\ 1.786 \\ 1.722 \\ 1.678 \\ 1.648 \\ 1.618 \\ 1.618 \\ 1.590 \end{array}$	$\begin{array}{c} \dots \\ \dots $	

Prossure	Mole Fraction Ethane									
P.S.I.A.	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
					400° F.					
B.P.	$(222)^{a}$	(424)	(633)	(865)	(1124)	(1391)	(1605)	(1634)°	(1427) ^c	
	3.754	3.546	3.346	3.167	3.023	2.933	2.975	3.390		
200	· · · ·									
400	3.715°				• • •		• • •		• • • •	
600	3.681	3.498	2 204		•••	• • •	• • •		•••	
1 000	3,605	3.400	3.294	2 118	•••	•••	• • •	•••	•••	
1,000	3.602	3 402	3 212	3.052	2 970	•••	•••	• • •	• • •	
1,500	3.579	3.374	3.179	3.009	2.862	2.862				
1,750	3.556	3.348	3.148	2.970	2.810	2.726	2.782	3.115	3.74	
2,000	3.530	3.322	3.121	2.937	2.767	2.654	2.618	2.752	3.277	
2,250	3.509	3.298	3.096	2.906	2.730	2.594	2.533	2.606	2.948	
2,500	3.486	3.279	3.074	2.882	2.698	2.547	2.458	2.474	2.677	
2,750	3.466	3.258	3.051	2.856	2.670	2.510	2.401	2.362	2.482	
3,000	3.447	3.239	3.030	2.833	2.644	2.478	2.348	2.271	2.322	
4,000	3 386	3.204	2.994	2,755	2.099	2.421	2.202	2.138	1 981	
4,000	3 358	3 144	2.500	2 7 2 2	2.500	2.333	2.149	1 972	1.880	
5.000	3.336	3.116	2.901	2.692	2.491	2.295	2.103	1.911	1.800	
6,000	3.290	3.070	2.851	2.641	2.437	2.234	2.036	1.834	1.684	
7,000	3.248	3.030	2.812	2,598	2.391	2.185	1.981	1.778	1.602	
8 ,000	3.214	2.994	2.778	2.564	2.354	2.145	1.936	1.731	1.544	
9,000	3.184	2.963	2.746	2.530	2.322	2.110	1.898	1.691	1.496	
10,000	3.149	2.932	2.716	2,501	2.291	2.078	1.864	1.655	1.458	
					460° F.					
	(274) ^a	(490)	(710)	(943)	(1193)	(1410)	(1477)	(1363)°		
	3.986	3.762	3.621	3.539	3.524	3.613	3.925	4.99^{d}		
200										
400	3.958°									
600	3.915	3.733		• • •			•••			
1 000	3.878	3.694	3.583		• • •	•••	• • •			
1,000	3.842	3,600	3.010	3.492	2 454	• • •	• • •	• • •	•••	
1,200	3 765	3 571	3 390	3 262	3 999	3 395	3.870	4 59	• • •	
1,750	3.731	3.533	3.345	3.198	3.108	3.100	3.297	3.74	4.30	
2,000	3.699	3.498	3.306	3.145	3.029	2.967	3.018	3.339	3.846	
2,250	3.670	3.466	3.269	3.101	2.968	2.870	2.852	3.014	3.430	
2.500	3.642	3.436	3.236	3.061	2.910	2.789	2.734	2.810	3.097	
2,750	3.616	3.407	3.206	3.024	2.862	2.721	2.642	2.662	2.850	
3,000	3.591	3.381	3.178	2.990	2.818	2.666	2.562	2.543	2.654	
3,500	3.549	3.335	3.128	2.933	2.750	2.574	2.435	2.354	2.366	
4,000	3.011	0.294 3.950	3.000	2.000 9 819	2.091	2.010	2.042	2.221	2.183	
5.000	3.449	3.228	3.015	2.806	2.605	2.411	2.222	2.120 2.054	1 959	
6,000	3.395	3.172	2.957	2.743	2.537	2.332	2.134	1.945	1.808	
7,000	3.348	3.126	2.906	2.691	2.479	2.270	2.066	1.866	1.699	
8,000	3.308	3.084	2.862	2.644	2.432	2.219	2.015	1.810	1.627	
9,000	3.270	3.045	2.823	2.606	2.391	2.181	1.972	1.764	1.574	
10,000	3.236	3.012	2.790	2.572	2.358	2.146	1.930	1.720	1.532	
7	onthese	ant hull.	-int			CD				
alues in par Jolume in cu	entneses repre bic feet per po	esent pupple p	oint pressures	expressed in p).s.1.a.	^d Estimate	ide dew point. ed			
	~ rees her he					Lounau				

A pressure-composition diagram for the ethane-n-decane system is shown in Figure 2. The experimentally determined bubble point pressures established from volumetric measurements, as well as the directly measured compositions of the coexisting phases, were used to establish the curves shown.

The dew point gas at the lower temperatures is substantially pure ethane, as a result of the low vapor pressure of decane. There is shown in Figure 3 the mole fraction n-decane in the gas phase as a function of pressure. The directly measured experimental data have been included. A detailed record of these experimentally determined compositions of the dew point gas is available (10).

Utilizing the information presented in Figures 2 and 3, the equilibrium ratios have been evaluated and are reported in Table II, together with the composition of the dew point and bubble point fluids. The data in Table II have been smoothed with respect to pressure and temperature. The standard error of estimate of the experimentally determined composition data from the information presented in Table II was 0.003 mole fraction. There is shown in Figure 4 the product of the equilibrium ratio for ethane and for n-decane and pressure as a function of pressure for each of the several temperatures investigated.

The influence of pressure and temperature upon the boundaries of the heterogeneous region for the four experimentally investigated mixtures of ethane and n-decane are shown in Figure 5. The loci of the unique states including the point of maximum pressure, the critical state, and the maxcondentherm are included in this diagram. Some of the properties of the unique states of the ethane-n-decane system are recorded as a function of composition in Table III. The information in Table III involves a much higher uncertainty than the data in Tables I or II. This situation

	Dew	Point	Bubbl	e Point		
D	Mole	Vol.,	Mole	Vol.,	Equilibr	rium Ratio
Pressure, P.S.I.A.	ethane	mole	ethane	mole	Ethane	Decane
			40° F.			
0.004° 50 100 150 200 250 300 350 385.0 ^o	0 0.9992 0.9994 0.9995 0.9996 0.9997 0.9998 0.9999 1.0	$\begin{array}{c} \dots \\ 21 \\ 17 \\ 13.6 \\ 10.9 \\ 1.200 \end{array}$	$\begin{array}{c} 0 \\ 0.1284 \\ 0.2576 \\ 0.3874 \\ 0.5166 \\ 0.6458 \\ 0.7769 \\ 0.9065 \\ 1.0 \end{array}$	3.055 2.805 2.550 2.286 2.020 1.758 1.510 1.293 1.200	7.782 3.880 2.580 1.935 1.548 1.287 1.103 1.000	$\begin{array}{c} 1.0000\\ 0.000918\\ 0.000808\\ 0.000816\\ 0.000827\\ 0.000847\\ 0.000896\\ 0.00107\\ 1.0000 \end{array}$
			100° F.			
0.073° 100 200 300 400 500 600 778° 718°	0 0.9985 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988 0.995 0.9988	16 12 8.40 6.01 4.02 2.142	0 0.1565 0.3060 0.4474 0.5801 0.7035 0.8165 0.9190 0.995	$\begin{array}{c} 3.166\\ 2.860\\ 2.549\\ 2.258\\ 1.990\\ 1.751\\ 1.550\\ 1.447\\ 2.142\\ \ldots\end{array}$	6.380 3.264 2.232 1.722 1.420 1.223 1.087 1.000	$\begin{array}{c} 1.0000\\ 0.00178\\ 0.00172\\ 0.00217\\ 0.00286\\ 0.00405\\ 0.00654\\ 0.015\\ 1.0000\\ \cdots\end{array}$
			160° F.			
$\begin{array}{c} 0.40^{a} \\ 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ 1000 \\ 1100 \\ 1184^{c} \\ 727^{d} \end{array}$	0 0.9947 0.9964 0.9968 0.9970 0.9970 0.9970 0.9970 0.9970 0.9970 0.9970 0.9970 0.9970 0.9960 0.9960 0.964 0.997	$\begin{array}{c} \dots \\ 19.2 \\ 14.0 \\ 10.6 \\ 8.41 \\ 6.80 \\ 5.57 \\ 4.60 \\ 3.78 \\ 3.02 \\ 1.769 \\ \dots \end{array}$	$\begin{matrix} 0 \\ 0.1114 \\ 0.2164 \\ 0.3144 \\ 0.4056 \\ 0.4897 \\ 0.5687 \\ 0.6432 \\ 0.7127 \\ 0.7777 \\ 0.8364 \\ 0.8933 \\ 0.964 \\ \dots \end{matrix}$	$\begin{array}{c} 3.302\\ 3.063\\ 2.846\\ 2.639\\ 2.450\\ 2.281\\ 2.119\\ 1.973\\ 1.842\\ 1.735\\ 1.664\\ 1.642\\ 1.769\\ \dots\end{array}$	$\begin{array}{c} \\ 8.93 \\ 4.60 \\ 3.17 \\ 2.458 \\ 2.036 \\ 1.753 \\ 1.550 \\ 1.399 \\ 1.282 \\ 1.192 \\ 1.115 \\ 1.000 \\ \ldots \end{array}$	$\begin{array}{c} 1.0000\\ 0.00596\\ 0.00459\\ 0.00467\\ 0.00505\\ 0.00588\\ 0.00696\\ 0.00841\\ 0.0104\\ 0.0135\\ 0.0183\\ 0.038\\ 1.000\\ \dots\end{array}$
			220° F.			
$\begin{array}{c} 1.59^{a} \\ 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ 1000 \\ 1100 \\ 1200 \\ 1300 \\ 1400 \\ 1509^{c} \\ 743^{d} \end{array}$	$\begin{matrix} 0 \\ 0.9817 \\ 0.9896 \\ 0.9919 \\ 0.9930 \\ 0.9934 \\ 0.9936 \\ 0.9935 \\ 0.9934 \\ 0.9930 \\ 0.9930 \\ 0.9919 \\ 0.9902 \\ 0.9877 \\ 0.9846 \\ 0.9804 \\ 0.9589 \\ 0.927 \\ 0.9936 \end{matrix}$	$\begin{array}{c} \dots \\ 22 \\ 16.1 \\ 12.5 \\ 10.1 \\ 8.32 \\ 7.01 \\ 5.98 \\ 5.15 \\ 4.47 \\ 3.89 \\ 3.36 \\ 2.88 \\ 2.27 \\ 2.022 \\ \dots \end{array}$	$\begin{matrix} 0 \\ 0.0835 \\ 0.1648 \\ 0.2421 \\ 0.3144 \\ 0.3821 \\ 0.4466 \\ 0.5058 \\ 0.5609 \\ 0.6134 \\ 0.6626 \\ 0.7098 \\ 0.7551 \\ 0.7987 \\ 0.8445 \\ 0.8986 \\ 0.927 \\ \dots \end{matrix}$	$\begin{array}{c} 3.443\\ 3.255\\ 3.077\\ 2.914\\ 2.763\\ 2.624\\ 2.494\\ 2.370\\ 2.259\\ 2.154\\ 2.058\\ 1.982\\ 1.926\\ 1.988\\ 1.904\\ 1.954\\ 2.022\\ \dots \end{array}$	$\begin{array}{c} 11.76\\ 6.005\\ 4.097\\ 3.158\\ 2.600\\ 2.225\\ 1.964\\ 1.771\\ 1.619\\ 1.497\\ 1.395\\ 1.308\\ 1.233\\ 1.161\\ 1.067\\ 1.000\\ \ldots \end{array}$	$\begin{array}{c} 1.0000\\ 0.0200\\ 0.0125\\ 0.0107\\ 0.0102\\ 0.0107\\ 0.0116\\ 0.0132\\ 0.0150\\ 0.0181\\ 0.0240\\ 0.0338\\ 0.0502\\ 0.0765\\ 0.1260\\ 0.405\\ 1.000\\ \dots\end{array}$
			280° F.			
5,08° 100 200 300 400 500 600 700 800 900	$\begin{matrix} 0 \\ 0.9450 \\ 0.9702 \\ 0.9784 \\ 0.9817 \\ 0.9833 \\ 0.9835 \\ 0.9838 \\ 0.9835 \\ 0.9835 \\ 0.9835 \\ 0.9835 \\ 0.9827 \end{matrix}$	$\begin{array}{c} \dots \\ 25 \\ 18.0 \\ 14.1 \\ 11.5 \\ 9.58 \\ 8.16 \\ 7.04 \end{array}$	$\begin{matrix} 0 \\ 0.0675 \\ 0.1357 \\ 0.2001 \\ 0.3164 \\ 0.3693 \\ 0.4188 \\ 0.4674 \\ 0.5126 \end{matrix}$	3.585 3.436 3.291 3.151 3.023 2.906 2.795 2.693 2.592 2.505	$14.00 \\ 7.15 \\ 4.89 \\ 3.77 \\ 3.108 \\ 2.663 \\ 2.349 \\ 2.104 \\ 1.917$	$\begin{array}{c} 1.0\\ 0.0590\\ 0.0345\\ 0.0270\\ 0.0247\\ 0.0244\\ 0.0262\\ 0.0279\\ 0.0310\\ 0.0355\end{array}$

Table II. Properties of Coexisting Gas and Liquid Phases

	Tc	able II. Properties of Coexi	isting Gas ar	nd Liquid Phases (con	tinued)		
	I	Dew Point	Bubbl	e Point			
Dressure	Mole	Volume,	Mole Volume, fraction on ft /lb		Equilibrium Ratio		
P.S.I.A.	ethane	mole	ethane 280° F.	mole	Ethane	Decane	
$1000 \\ 1100 \\ 1200 \\ 1300 \\ 1400 \\ 1500 \\ 1687^{\circ} \\ 780^{d}$	$\begin{array}{c} 0.9810\\ 0.9785\\ 0.9755\\ 0.9715\\ 0.9660\\ 0.9560\\ 0.9353\\ 0.888\\ 0.9838\end{array}$	$\begin{array}{c} 6.16 \\ 5.42 \\ 4.79 \\ 4.26 \\ 3.77 \\ 3.32 \\ 2.90 \\ 2.407 \end{array}$	0.5567 0.5985 0.6380 0.6765 0.7140 0.7522 0.7987 0.888	$\begin{array}{c} 2.418\\ 2.334\\ 2.255\\ 2.190\\ 2.143\\ 2.126\\ 2.147\\ 2.407\end{array}$	$\begin{array}{c} 1.762 \\ 1.635 \\ 1.529 \\ 1.436 \\ 1.353 \\ 1.271 \\ 1.171 \\ 1.0 \end{array}$	$\begin{array}{c} 0.0429\\ 0.0535\\ 0.0677\\ 0.0881\\ 0.1189\\ 0.1776\\ 0.321\\ 1.0\\ \end{array}$	
			340° F .				
$\begin{array}{c} 13.49^{a}\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1500\\ 1600\\ 1500\\ 1600\\ 1700\\ 1715^{c}\\ 826^{a}\end{array}$	$\begin{array}{c} 0 \\ 0.8673 \\ 0.9306 \\ 0.9498 \\ 0.9574 \\ 0.9610 \\ 0.9619 \\ 0.9625 \\ 0.9625 \\ 0.9625 \\ 0.9620 \\ 0.9610 \\ 0.9598 \\ 0.9579 \\ 0.9550 \\ 0.9490 \\ 0.9390 \\ 0.9390 \\ 0.9181 \\ 0.8645 \\ 0.835 \\ 0.9625 \end{array}$	$\begin{array}{c} & \ddots & \\ & 27 \\ 19.7 \\ 15.5 \\ 12.6 \\ 10.7 \\ & 9.13 \\ 7.94 \\ 6.98 \\ 6.20 \\ 5.53 \\ 4.95 \\ 4.44 \\ 3.97 \\ 3.52 \\ 2.98 \\ 2.787 \\ \cdots \end{array}$	$\begin{matrix} 0 \\ 0.0522 \\ 0.1107 \\ 0.1673 \\ 0.2219 \\ 0.2738 \\ 0.3231 \\ 0.3698 \\ 0.4133 \\ 0.4540 \\ 0.4936 \\ 0.5309 \\ 0.5678 \\ 0.6060 \\ 0.6452 \\ 0.6849 \\ 0.7292 \\ 0.7902 \\ 0.835 \\ \dots \end{matrix}$	3.742 3.637 3.511 3.397 3.284 3.176 3.072 2.976 2.886 2.803 2.726 2.655 2.590 2.530 2.474 2.430 2.449 2.579 2.579 2.787 	$16.61 \\ 8.407 \\ 5.672 \\ 4.315 \\ 3.510 \\ 2.977 \\ 2.603 \\ 2.329 \\ 2.119 \\ 1.947 \\ 1.808 \\ 1.687 \\ 1.576 \\ 1.471 \\ 1.371 \\ 1.259 \\ 1.094 \\ 1.0 \\ \cdots$	$\begin{array}{c} 1.0\\ 0.1400\\ 0.0780\\ 0.0603\\ 0.0547\\ 0.0563\\ 0.0595\\ 0.0639\\ 0.0696\\ 0.0770\\ 0.0857\\ 0.0974\\ 0.1142\\ 0.1437\\ 0.1936\\ 0.3024\\ 0.646\\ 1.0\\ \dots\end{array}$	
			400° F.				
$\begin{array}{c} 31.19^a\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ 1100\\ 1200\\ 1300\\ 1400\\ 1500\\ 1600\\ 1640^c\\ 862^d\end{array}$	$\begin{array}{c} 0\\ 0.6830\\ 0.8362\\ 0.8845\\ 0.9038\\ 0.9097\\ 0.9118\\ 0.9129\\ 0.9138\\ 0.9140\\ 0.9138\\ 0.9140\\ 0.9138\\ 0.9130\\ 0.9118\\ 0.9097\\ 0.9032\\ 0.8850\\ 0.8389\\ 0.778\\ 0.9141\\ \end{array}$	$\begin{array}{c} \dots \\ 28 \\ 21 \\ 16.4 \\ 13.5 \\ 11.3 \\ 9.73 \\ 8.49 \\ 7.48 \\ 6.66 \\ 5.98 \\ 5.40 \\ 4.84 \\ 4.28 \\ 3.67 \\ 3.249 \\ \dots \end{array}$	$\begin{matrix} 0 \\ 0.0358 \\ 0.0874 \\ 0.1383 \\ 0.1879 \\ 0.2357 \\ 0.2817 \\ 0.3277 \\ 0.3716 \\ 0.4139 \\ 0.4529 \\ 0.4911 \\ 0.5276 \\ 0.5679 \\ 0.6040 \\ 0.6451 \\ 0.6967 \\ 0.778 \\ \dots \end{matrix}$	$\begin{array}{c} 3.962\\ 3.888\\ 3.780\\ 3.676\\ 3.571\\ 3.472\\ 3.378\\ 3.291\\ 3.211\\ 3.142\\ 3.086\\ 3.034\\ 2.991\\ 2.955\\ 2.930\\ 2.926\\ 2.970\\ 3.249\\ \dots\end{array}$	19.08 9.57 6.396 4.810 3.860 3.237 2.786 2.459 2.208 2.018 1.859 1.728 1.602 1.495 1.372 1.204 1.0	$\begin{array}{c} 1.0\\ 0.3288\\ 0.1795\\ 0.1340\\ 0.1185\\ 0.1181\\ 0.1228\\ 0.1296\\ 0.1372\\ 0.1467\\ 0.1576\\ 0.1710\\ 0.1867\\ 0.2090\\ 0.2444\\ 0.3240\\ 0.531\\ 1.0\\ \end{array}$	
			460° F.				
64.72^{a} 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1481 ^c 851 ^d	$\begin{array}{c} 0\\ 0.3347\\ 0.6361\\ 0.7356\\ 0.7840\\ 0.8121\\ 0.8280\\ 0.8361\\ 0.8387\\ 0.8389\\ 0.8387\\ 0.8389\\ 0.8382\\ 0.8389\\ 0.8352\\ 0.8281\\ 0.8139\\ 0.7861\\ 0.698\\ 0.8389\end{array}$	$\begin{array}{c} \dots \\ \dots \\ \dots \\ \dots \\ 14.0 \\ 11.7 \\ 10.0 \\ 8.74 \\ 7.68 \\ 6.81 \\ 6.06 \\ 5.39 \\ 4.74 \\ 3.916 \\ \dots \end{array}$	$\begin{matrix} 0 \\ 0.0170 \\ 0.0645 \\ 0.1118 \\ 0.2053 \\ 0.2511 \\ 0.2956 \\ 0.3387 \\ 0.3813 \\ 0.4239 \\ 0.4648 \\ 0.5043 \\ 0.5043 \\ 0.5942 \\ 0.698 \\ \ldots \end{matrix}$	$\begin{array}{c} 4.229\\ 4.187\\ 4.074\\ 3.957\\ 3.845\\ 3.753\\ 3.682\\ 3.626\\ 3.582\\ 3.550\\ 3.530\\ 3.522\\ 3.526\\ 3.546\\ 3.602\\ 3.916\\ \ldots\end{array}$	19.68 9.86 6.580 4.937 3.956 3.297 2.828 2.476 2.200 1.979 1.797 1.642 1.494 1.323 1.0	$\begin{array}{c} 1.000\\ 0.6768\\ 0.3890\\ 0.2977\\ 0.2568\\ 0.2364\\ 0.2297\\ 0.2327\\ 0.2439\\ 0.2604\\ 0.2800\\ 0.3079\\ 0.3468\\ 0.4088\\ 0.527\\ 1.0\\ \ldots\end{array}$	
^{\circ} Vapor pressure of <i>n</i>	-decane.	[•] Vapor pressure of ethane.	[°] Estim	ated critical state.	^d Estimated	maxcondentherm.	

Figure 3. Experimental composition of dew point gas

Table III. Properties at the Unique States in the Ethane–n-Decane System

	Critical		Maxcon	dentherm	Maximum Pressure	
Mole Fraction Ethane	Pres- sure, p.s.i.a.	Temp., °F.	Pres- sure, p.s.i.a.	Temp., °F.	Pres- sure, p.s.i.a.	Temp., °F.
$\begin{array}{c} 0.0 \\ 0.1 \end{array}$	306ª	654°	306	654	306	654
$\begin{array}{c} 0.2 \\ 0.3 \end{array}$						
$\begin{array}{c} 0.4 \\ 0.5 \end{array}$					$970 \\ 1198$	$517.1 \\ 482.9$
$\begin{array}{c} 0.6 \\ 0.7 \end{array}$	$\begin{array}{c} 1274 \\ 1482 \end{array}$	$502.2 \\ 459.6$	800	506.3	$\begin{array}{c} 1422 \\ 1605 \end{array}$	$445.2 \\ 399.8$
$0.8 \\ 0.9 \\ 1.0$	$ \begin{array}{r} 1681 \\ 1652 \\ 716^{\circ} \end{array} $	375.4 262.5	837 862 716	477.9 419.5	$1706 \\ 1682 \\ 716$	$350.1 \\ 295.5 \\ 90.1$
° Critical	state of n	-decane (1). ⁷ Critic	so.1 cal state of	f ethane (1	90.1).

results from the extensive interpolation of the volumetric and phase equilibrium data required to arrive at the pressures and temperatures associated with these states. Uncertainties as large as 4% in pressure and 5° F. in temperature are to be expected. Probable error in these values is smaller, but cannot be established with certainty.

ACKNOWLEDGMENT

Virginia Berry and Virginia Moore contributed materially to the reduction of the experimental data to a form suitable for publication. B. Lawson Miller assisted in the preparation of the manuscript.

LITERATURE CITED

- Am. Petroleum Inst. Research Project 44, Petroleum Research Laboratory, Carnegie Institute of Technology, "Selected Values of Properties of Hydrocarbons and Related Compounds."
- Beattie, J.A., Hadlock, C., Poffenberger, N., J. Chem. Phys. 3, 93 (1935).

PRESSURE PSIA Figure 4. Equilibrium ratios for

ethane and *n*-decane

TEMPERATURE *F

Figure 5. Pressure-temperature diagram for ethane-n-decane system

- (3) Beattie, J.A., Su, G.-J., Simard, G.L., J. Am. Chem. Soc. 61, 924 (1939).
- (4) Ibid., p. 926
- (5) Bridgeman, O.C., Ibid., 49, 1174 (1927).
- (6) Meyers, C.H., Bur. Standards J. Research 9, 807 (1932).
- (7) Reamer, H.H., Fiskin, J.M., Sage, B.H., Ind. Eng. Chem. 41, 2871 (1949).
- (8) Reamer, H.H., Olds, R.H., Sage, B.H., Lacey, W.N., *Ibid.*, 34, 1526 (1942).
- (9) Ibid., 36, 956 (1944).
- (10) Reamer, H.H., Sage, B.H., Am. Doc. Inst., Washington, D. C., Doc. No. 6946 (1962).
- (11) Reamer, H.H., Sage, B.H., Rev. Sci. Instr. 26, 592 (1955).
 (12) Sage, B.H., Lacey, W.N., Trans. Am. Inst. Mining Met.
- Engrs. 136, 136 (1940). (13) Sage, B.H., Lavender, H.M., Lacey, W.N., Ind. Eng. Chem. 32, 743 (1940).
- (14) Schmidt, Ernst, Thomas, W., Forsch. Gebiete Ingenieurw. 20B, 161 (1954).

RECEIVED for review August 28, 1961. Accepted November 7, 1961. Contribution from the American Petroleum Institute Research Project 37 at the California Institute of Technology. Material supplementary to this article has been deposited as Document No. 6946 with the ADI Auxiliary Publications Project, Photoduplication Service, Library of Congress, Washington 25, D. C. A copy may be secured by citing the document number and by remitting \$1.25 for photoprints, or \$1.25 for 35-mm. microfilm. Advance payment is required. Make checks or money orders payable to: Chief, Photoduplication Service, Library of Congress.